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7-Norbornenylidene, I, is predicted to be a "singlet, stabilized, nonclass- 

ical methylene", 
0 

its carbenic bridge ought to incline -20 away from the vertical 
1 

and toward the double bond. No such stabilization is predicted for 7-norborn- 

anylidene, II, which should have normal geometry and a triplet ground state. 
1 

I II 

We have discussed the intramolecular chemistry of thermally-generated II2 (sum- 

marized in eq. [l]), which should significantly differ from that of I. Now we 

report initial, .-detailed studies of the 
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its intramolecular chemistry. 
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7-Norbornenone tosylhydrazone (83%, mp. 156-157.5 decomp., from CHsOH), 

important carbene I, and we comment on 

was converted to its Li salt with 1 equiv. of "-butyllithium in ether. After 

thorough vacuum drying, 5 g. of the salt was pyrolyzed in a previously degassed 

0 
system at 0.05 Torr. and 190-191 . The approach to the rather sharp pyrolysis 

0 0 
temperature was made at -0.35 /min. from 179 , where the salt was stable for at 

5 
least 15 min. About a 50% yield of hydrocarbon product mixture was trapped at 

77OK. Gc indicated 17 components, most of which were very minor (cl%). We used 

a 15', 0.25", 15% SF-96 on 90/100 Anakrom ABS column at 50' , programmed to 160°, 

in stases, over 164 min. Injector and detector temperatures were 120' and 130'. - 
"Allied Chemical Company Fellow, 1971-2. 
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Gc isolation was carried out at a column temperature of 50'. The major identi- 

fied products and their distribution (% of all products, uncorrected for gc detec- 

tor response) are shown in eq. 

&s+Lh 

2.3% 0.9% 

bl. 

+&g+(yJ+b+m bl 

1.0% - 67% 1.6% 6.9% 

III IV V 

1,3_Cyclohexadiene, toluene, and spiro[2,4]heptadiene, V, 
d 

were identified 

by comparison of their nmr spectra and gc retention times with those of authentic 

samples. Norbornene and III' were identified only by retention times. 

Bicyclo[3.2.O]heptadiene-1,6, IV, had M+ at (m/e) 92 (30.3%), a base peakat 

.s 
91, and a "carbon count" of 7 (m/e 93 was 2.4%). A pure sample absorbed 2.0 

0 
equiv. of Ha (10% Pd/C, -30 , ether), yielding bicyclo[3.2.O]heptane, identical 

(nmr) with a sample prepared by hydrogenation of bicyclo[3.2.0]heptadiene-2,6. 
0 

10 
Definitive spectral identification of IV is based upon the 100 MHz. nmr 

spectrum (CSa, -47') and 60 MHz. double resonance experiments (CSa, 32'). Eight 

distinct l-proton signals (3 vinyl, 1 doubly allylic, 2 allylic, and 2 "isolated") 

14 

were observed and are assigned as follows: 6.716, d, J=1.5, H2; 6.4(X, t,J-2, 

HI 

IV VI 

Hl; 4.966, q, spacings -1.5, H3; 3.386, crude "t" (eachbranch further split), 

spacings 8, H8; 2.836, m (7 bands, each with further splitting), major separalicms 

-5, H4; 2.276, octet, spacings 4, H5; 1.916, quintet, spacings -6, H6; 1.536, m 

in 5 major sections (individual peaks at 1.72, 1.64, 1.62, 1.61, 1.54, l-53,1.51, 

1.43, 1.42, 1.40, 1.31), H7. The spectrum is consistent with IV, but not with 

diene, VI. (VI is the most difficult-to-exclude alternative among the 9 other, 

non-allenic bicyclo[3.2.0]heptadienes). The chemical shift of H3 is not consis- 

tent with any of the cyclopentadiene protons of VI, but is reasonable for IV. 

(The analogous proton in bicyclo[3.2.0]heptene-1 occurs at 5.136).' Double reso- 

nance experiments show that H3 is coupled to H4 and H5 (by -2 and 4 Hz.), but it 

is not coupled to either H2 or Hl (~1 Hz.), which are mutually coupled by -2 Hz. 

These observations are consistent with IV.15'16'17 In VI, however, each vinyl 



proton should be coupled to at least one other vinyl proton (Jrs-2, J,s-5 Hz.).17 

Allylic proton 5 can be readily analyzed giving J,,=16, J,,=4, and J,,=8 Hz. H5 

is not coupled to H6. A model of IV, constructed to maximize p orbital overlap, 

indicates a dihedral angle of 90' 
17 

between H5 and H6, predicting J=O. Addiliaml 

double resonance experiments, and a satisfactory computed spectrum, with assoc- 
16 

iated, consistent J values, support the above assignments. 

Control pyrolyses experiments, over lithium toluene-p-sulfinate at 18-195' 

and 0.1 Torr., demonstrated the stability and independence of III, IV, and V. Cc 

experiments showed invariant product distribution at varying injector tempera- 

tures up to 185'. IV could be rearranged in a glass flow system at 170°, 15 set- 

onds residence, He stream, to toluene and benzene. No other products could be 
19 

detected; V was stable under these conditions. 

Eq. [3] offers an attractive rationalization for the formation of products 

IV and V. IV could arise by fulfillment of the carbene-Il interaction;' perhaps 

via dipolar VII, which combines features of a cyclopropyl anion and a cyclopro- 

pylcarbinyl cation. (VII could be either a transition state or an unstable in- 
1 

tennediate). The "foiled methylene" adduct, VIII, could also be a fleeting irr 
a1 

termediate. Alternatively, IV could arise y& a direct, 1,7-vinyl shift, fa- 
22 1 

vored by the calculated, distinctive geometry of I. Migration of the ethano 

bridge of I could afford unstable VI, and thence V. Dominance of IV over V(W), 

and reduced insertion and abstraction (compared to II) may suggest special elec- 
1 

tronic and geometric features in I. 1,3Cyclohexadiene could stem from cyclo- 

reversion of I, accompanied by the release of Cr. This would resemble the be- 
23 

havior of 7-quadricyclanylidene. Reversion of I to cyclopentadienylidene and 

ethylene, followed by cyclopropanation, constitutes an alternative route to V, 

which we will investigate. 

Fisch and Pierce have recently described reactions of bicyclo[3.3.l]non-2- 
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en-9-ylidene, which they analyzed as suggestive of a "foiled methylene"(nonclass- 
14 

ical carbene). It remains to be seen whether the related intramolecular chemis- 
24 

try reported for this species, and now for I; is diagnostic of a nonclassical 

carbene. We are searching for "nucleophilic" intermolecular chemistry of I, 

which could aid in this evaluation. 
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